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�Traditionally, “efficient” computation 
is identified with polynomial time
� P vs NP
� Clearly, not adequate for massive data 

sets

� Is there a simple characterization of 
efficient computation over massive 
datasets?

Algorithms for Massive Data Sets



A Single Theory?

�Modern computing systems are 
complex and varied 
�Memory + I/O architectures
� Distributed computing e.g. Map-Reduce
� Randomization
� Etc.

�Difficult to capture all these aspects in 
a single model



Many Paradigms

�Sampling
�Sketching
�Data Streams
�Read-write streams
�Stream-sort
�Map-reduce
�External memory algorithms

… and many more yet to come!



Lower Bounds

�This is a fertile ground for proving 
unconditional results

�Many successes ☺
�Certain problems seem to be 

fundamental
�Reductions play a big role



Sampling

Input Data

Algorithm

� Query input at 
random locations

� Can query adaptively

� Key Measure: 
#queries



Warm-up: distinct elements (F0)

� “Needle-in-a-haystack”
�Create 2 inputs

�2-approximation needs space Ω(n)

0 0 0 . . . 0

0 0 1 . . . 0

F0 = 1

F0 = 2



Theorem [Bar-Yossef, Kumar, Sivakumar]

For symmetric functions, uniform sampling is the 
best possible.

Sampling LBs for Symmetric Functions



Proof

Algorithm

X1 .  .  . Xn-1X2 Xn

X3 .  .  . XnXn-1 X17

PERMUTE



Lower Bounds for Uniform Sampling

Tools:
� block sensitivity 

� Hellinger distance

� Kullback-Leibler divergence 

� Jensen-Shannon divergence

Combinatorics
[Nisan]

Statistics
[Bar-Yossef et al.]

Information theory
[Bar-Yossef]



Example

�Find the mean of n numbers in [0,1]

�Exercise: Show that Ο(1/ε2) samples 
suffice to approximate mean additively 
within ε

�Lower Bound proof using Hellinger
distance



Step 1: Approximation Î Promise

�Let
� a : ½ + ε 0’s and ½ - ε 1’s 

� b : ½ - ε 0’s and ½ + ε 1’s
� Promise: Input x ∈ {a,b}

�Any sampling algorithm for Mean can 
distinguish whether x=a or x=b
� as long as additive error is ε/4



Step 2: Create distributions

�Pa: distribution induced by taking a 
uniform sample from input a

�Pb: sampling uniformly from input b

�Compute Hellinger distance h2(Pa,Pb)
� For discrete distributions P, Q

h2(P,Q) = (½) k√P - √Qk2

= (½ ) Σx (√P(x) - √Q(x))2

� h(Pa,Pb) = O(ε) (Exercise)



Lower bound via Hellinger Distance

Theorem.

Any uniform sampling algorithm needs

k=Ω(1/ε2)

samples to distinguish input a from input b



Proof

� Initially: h(Pa,Pb) = O(ε)

�Finally: h((Pa)k,(Pb)k) = Ω(1)
[By distinguishability]

�Key Idea: multiplicative property of 
Hellinger distance 

1 – h2(Pk,Qk) = (1 – h2(P,Q))k
(Exercise)

�So O(1) = (1- O(ε2))k Æ k = Ω(1/ε2)



Summary

� Identify 2 hard inputs such that
� The outputs are different
� Sampling from the inputs creates close

distributions

�Apply Theorem to get LB on samples

�Extensions [Bar-Yossef] : more than 2 
inputs, multi-output answers etc.



Data Streams

Algorithm

Data Set

�Stream through the data in a one-way
fashion
� limited main memory storage
� Also allow multiple passes



Lower Bounds for Data Streams

� Idea is to somehow bound the flow of 
information (yields space lower 
bounds)

�Model is too fine-grained to prove 
lower bounds directly

� Instead, we consider more powerful 
models (hopefully simpler to tackle)



Communication complexity (C.C.)

x y

Resources:
# bits = ∑i |ai| + ∑j |bj| + |f(x,y)|
# rounds

See book by Kushilevitz & Nisan
Extensions to multiple parties

Alice Bob

a1

b1

a2

M
ak

f(x,y)



Transcripts

� Issue: Answer is too long!
�Solution: let last player output some 

more bits instead of the answer
� Contributes to bit cost
� Does not increase #rounds

�Transcript: string describing the entire 
communication + last player’s output
� Output is a function of the transcript 

alone



Data Streams Î C.C.

Theorem.

Data stream algorithm for f(x ◦ y)
Space s
Passes k

C.C. protocol for f(x,y)
Bits O(2ks)

Rounds 2k-1



Algorithm

x y

Memory

Proof

� Alice gets x and Bob gets y
� Given data stream algorithm P, Alice and 

Bob simulate P on x ◦ y

a1

b1

a1b1a2

a2

f(x,y)

b2



One-pass Data Stream

�Data stream algorithm for f(x◦y)
�Space s

Î O(s), 1-round protocol for f(x,y)

�One-round communication protocols 
are worthy of study!



Caveat

�C.C. usually deals with decision
problems

�Data stream problems involve 
approximate computations

�Usual reduction techniques yield 
promise problems in C.C.



The Equality Function

�EQ: U × U Æ {0,1}
�EQ(x,y) = 1 iff x = y

Theorem.

Deterministic C.C. of EQ equals log |U|



Proof Warmup: One-way

�Suppose Alice sends fewer than 
log|U| bits

�#messages of Alice < 2log|U| = |U|
�By pigeonhole principle, there exist 

distinct x, x’ ∈ U s.t. Alice sends the 
same message for both x and x’

�Suppose Bob’s input is x. 
�Then protocol gives same answer on 

both (x,x) and (x’,x). 
�Contradiction.



Proof for General Protocols

Fundamental Theorem of C.C.

Let P(x,y) denote the transcript of a det. 
communication protocol P. Then,

P(x,y) = t = P(u,v)
Î P(x,v) = t = P(y,v)

x

u

vy



Rectangle Property of C.C.

� View P(x,y) as a 
matrix of transcripts
� Rows/Columns indexed by 

inputs to Alice/Bob resp.

� Every transcript is a 
combinatorial 
rectangle in P
� of the form A × B
� A: subset of rows
� B: subset of columns



Fooling Set Method for EQ

�Consider the set of inputs
F = { (x,x) : x ∈ {0,1}n }  (YES instances)

�No two inputs in F can generate the 
same transcript in a protocol P. Why?

�Suppose P(x,x) = t = P(x’,x’), x ≠ x’
�By fundamental theorem, P(x,x’) = t
�Protocol errs on (x,x’). Contradiction!

�# of transcripts ≥ 2n



Gap Hamming Distance (GHD)

� x,y ∈ {0,1}n

� |x| = |y| = n/2

Promise problem (with parameter ∆>0):
� GHD∆(x,y) 

= 1 if dH(x,y) ≥ (1 + ∆)n/2
= 0 if dH(x,y) ≤ n/2

Exercise: Show the connection between GHD∆

and distinct elements (F0) 



Reduction from EQ to GHD

� Idea: use a binary error-correcting code
� Encoder E maps n bits to N = Θ(n) bits
� Each codeword has weight N/2
� Relative distance ∆ = Θ(1)
� Such codes exist; need not be constructive!

� Given inputs x,y to EQ
� Construct x’ = E(x) ◦ 0N/2 1N/2

� Construct y’ = E(y) ◦ 1N/2 0N/2

� |x’| = |y’| = N
� dH(x’,y’) is either N or (1+∆)N

� Æ GHD∆(x’,y’) satisfies the right properties 



Summary

� Deterministic LBs are easier to handle*

� LB problem gets considerably harder for 
randomized data stream algorithms
� Randomization is powerful
� Exercise: show O(1)-bit protocol for equality 

(Hint: Use error-correcting codes)

� Will see how to handle randomized 
protocols in the next lecture



Summary

�C.C. is a well-developed field with 
many tools and ideas, so offers hope 
for streaming LBs

�But the problems that arise from 
streaming are difficult
� promise problems
� randomized computation



Algorithm

Sketching

� Function-specific data compression
� Lossy data compression

� function is usually only approximable
� Data is distributed over several chunks

� Chunks are compressed into small sketches
� Function is computed over the sketches

Data 
Chunk



Indexing (IND)

� Input: a binary string x of length n

�Can we sketch it so that any bit can 
be retrieved w.h.p.?

Theorem.

The sketching complexity of IND is Ω(n).



Information Theory Primer

Entropy of a random variable X

� amount of “uncertainty” in X (in bits)

� X is constant Æ H(X) = 0

� X is uniform Æ H(X) = log(|range(X)|)
� largest value possible

H(X) = −
X
x

Pr[X = x] log Pr[X = x]



Binary Entropy: H2(·)



Conditional Entropy

Conditional entropy of X given Y

� amount of uncertainty left in X after 
knowing Y

� H(X | X) = 0

� If X,Y are independent, H(X | Y) = H(X)

H(X | Y) = H(X,Y)− H(Y)



Mutual Information

Mutual information between X and Y:

Conditional mutual information:

I(X : Y) = H(X)− H(X | Y)

= H(Y)−H(Y | X)

I(X : Y | Z) = H(X | Z)−H(X | Y,Z)



Basic Relationships

H(X | Y)
I(X : Y)

H(Y | X)

H(X,Y)

H(X) H(Y)



Sub-additivity

Entropy is sub-additive
H(X,Y) ≤ H(X) + H(Y).

� Equality iff X, Y independent
�Î H(X | Y) ≤ H(X)
�Î H(X | Y,Z) ≤ H(X | Z)



Fano’s Inequality

�X: a binary random variable

�Y: a predictor of X
� g(Y) is a “guess” of X, for some function g

�E: indicator r.v. for error event
“g(Y) ≠ X”

Then, H(X | Y) ≤ H(E)
� If Pr[E] ≤ δ ≤ ½, then H(E) ≤ H2(δ) 



Indexing

� Input: a binary string x of length n

�Output: a sketch of x so that any bit 
of x can be retrieved w.h.p.

Theorem.

The sketching complexity of indexing is Ω(n).



Proof

�Let s(x,R) be the sketch of x
� R is a public coin

�Let X be uniformly chosen in {0,1}n

�Let S = s(X,R)

�We will show that H(S) is large
Æ sketch size must be large



Proof (cont.)

H(S)
≥ H(S | R)
≥ H(S | R) – H(S | X,R) 
= I(X : S | R) 
= H(X | R) – H(X | S,R)

H(X | R) = H(X) = n



Proof (cont.)

H(X | S,R)
= H(X1,X2,...,Xn | S,R)
≤ ∑i H(Xi | S,R)

[by sub-additivity]
≤ n · H2(δ)

[by Fano’s inequality]

Concluding,
H(S) ≥ n – n · H2(δ) ≥ n · (1- H2(δ))



Summary

� Information-theoretic arguments 
provide a general LB template

�Can be used to prove lower bounds for 
other functions, e.g., set disjointness

� In some cases, refined tools are 
needed to understand the structure
� E.g., Statistics, Fourier analysis

�Open problem: prove good lower 
bounds on the sketching of edit 
distance
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