Lower Bounds

T.S. Jayram (IBM Almaden)

MADALGO Summer School Lecture I

Algorithms for Massive Data Sets

- Traditionally, "efficient" computation is identified with polynomial time
 - P vs NP
 - Clearly, not adequate for massive data sets

Is there a simple characterization of efficient computation over massive datasets?

A Single Theory?

- Modern computing systems are complex and varied
 - Memory + I/O architectures
 - Distributed computing e.g. Map-Reduce
 - Randomization
 - Etc.

Difficult to capture all these aspects in a single model

Many Paradigms

- Sampling
- Sketching
- Data Streams
- Read-write streams
- Stream-sort
- □ Map-reduce
- External memory algorithms

... and many more yet to come!

Lower Bounds

- This is a fertile ground for proving unconditional results
- □ Many successes ☺
- Certain problems seem to be fundamental
- Reductions play a big role

Sampling

Query input at random locations

Can query adaptively

Key Measure: #queries

Warm-up: distinct elements (F₀)

"Needle-in-a-haystack"Create 2 inputs

\square 2-approximation needs space $\Omega(n)$

Sampling LBs for Symmetric Functions

Theorem [Bar-Yossef, Kumar, Sivakumar]

For symmetric functions, uniform sampling is the best possible.

Proof

Lower Bounds for Uniform Sampling

Tools:

block sensitivity

Combinatorics [Nisan]

Hellinger distance

Statistics [Bar-Yossef et al.]

Kullback-Leibler divergence

Jensen-Shannon divergence

Information theory [Bar-Yossef]

Example

□ Find the mean of n numbers in [0,1]

Exercise: Show that O(1/ε²) samples suffice to approximate mean additively within ε

Lower Bound proof using Hellinger distance

Step 1: Approximation -> Promise

Let

• $a: \frac{1}{2} + \varepsilon$ O's and $\frac{1}{2} - \varepsilon$ 1's

• b : $\frac{1}{2}$ - ε 0's and $\frac{1}{2}$ + ε 1's

Promise: Input $x \in \{a,b\}$

Any sampling algorithm for Mean can distinguish whether x=a or x=b
 as long as additive error is ε/4

Step 2: Create distributions

- P_a: distribution induced by taking a uniform sample from input a
- □ P_b: sampling uniformly from input b

Compute Hellinger distance h²(P_a,P_b)
 For discrete distributions P, Q
 h²(P,Q) = (¹/₂) ||√P - √Q||²
 = (¹/₂) Σ_x (√P(x) - √Q(x))²

 $\bullet h(P_a, P_b) = O(\varepsilon) \text{ (Exercise)}$

Lower bound via Hellinger Distance

Proof

□ Initially: $h(P_a, P_b) = O(ε)$

□ Finally: h((P_a)^k, (P_b)^k) = Ω(1) [By distinguishability]

- Key Idea: multiplicative property of Hellinger distance
 - $1 h^2(P^k, Q^k) = (1 h^2(P, Q))^k$ (Exercise)

 $\Box \operatorname{So} \operatorname{O}(1) = (1 - \operatorname{O}(\varepsilon^2))^k \rightarrow k = \Omega(1/\varepsilon^2)$

Summary

□ Identify 2 hard inputs such that

- The outputs are different
- Sampling from the inputs creates close distributions

□ Apply Theorem to get LB on samples

■ Extensions [Bar-Yossef] : more than 2 inputs, multi-output answers etc.

Data Streams

Stream through the data in a one-way fashion

limited main memory storage

Also allow multiple passes

Lower Bounds for Data Streams

Idea is to somehow bound the flow of information (yields space lower bounds)

Model is too fine-grained to prove lower bounds directly

Instead, we consider more powerful models (hopefully simpler to tackle)

Communication complexity (C.C.)

Resources: # bits = $\sum_i |a_i| + \sum_j |b_j| + |f(x,y)|$ # rounds

See book by Kushilevitz & Nisan Extensions to multiple parties

Transcripts

□ Issue: Answer is too long!

- Solution: let last player output some more bits instead of the answer
 - Contributes to bit cost
 - Does not increase #rounds
- □ Transcript: string describing the entire communication + last player's output
 - Output is a function of the transcript alone

Data Streams → C.C.

Proof

Alice gets x and Bob gets y Given data stream algorithm P, Alice and Bob simulate P on x o y

One-pass Data Stream

□ Data stream algorithm for f(x∘y)

- Space s
- \rightarrow O(s), 1-round protocol for f(x,y)

One-round communication protocols are worthy of study!

Caveat

C.C. usually deals with decision problems

Data stream problems involve approximate computations

Usual reduction techniques yield promise problems in C.C.

The Equality Function

 $\Box EQ: U \times U \rightarrow \{0,1\}$ $\Box EQ(x,y) = 1 \text{ iff } x = y$

Theorem.

Deterministic C.C. of EQ equals log |U|

Proof Warmup: One-way

- Suppose Alice sends fewer than log |U| bits
- \square #messages of Alice < $2^{\log|U|} = |U|$
- By pigeonhole principle, there exist distinct x, x' ∈ U s.t. Alice sends the same message for both x and x'
- □ Suppose Bob's input is **x**.
- Then protocol gives same answer on both (x,x) and (x',x).
- □ Contradiction.

Proof for General Protocols Fundamental Theorem of C.C. Let P(x,y) denote the transcript of a det. communication protocol P. Then, P(x,y) = t = P(u,v) \rightarrow P(x,v) = t = P(y,v) У X

u 🔍 🔵

Rectangle Property of C.C.

View P(x,y) as a matrix of transcripts

- Rows/Columns indexed by inputs to Alice/Bob resp.
- Every transcript is a combinatorial rectangle in P
 - of the form A × B
 - A: subset of rows
 - B: subset of columns

Fooling Set Method for EQ

Consider the set of inputs $F = \{ (x,x) : x \in \{0,1\}^n \}$ (YES instances)

□ No two inputs in F can generate the same transcript in a protocol P. Why?
□ Suppose P(x,x) = t = P(x',x'), x ≠ x'
□ By fundamental theorem, P(x,x') = t
□ Protocol errs on (x,x'). Contradiction!

\square # of transcripts $\geq 2^n$

Gap Hamming Distance (GHD)

□ $x,y \in \{0,1\}^n$ □ |x| = |y| = n/2

Promise problem (with parameter Δ >0): \Box GHD_{Δ}(x,y) = 1 if d_H(x,y) $\geq (1 + \Delta)n/2$ = 0 if d_H(x,y) $\leq n/2$

Exercise: Show the connection between GHD_{Δ} and distinct elements (F₀)

Reduction from EQ to GHD

□ Idea: use a binary error-correcting code

- Encoder E maps n bits to N = $\Theta(n)$ bits
- Each codeword has weight N/2
- Relative distance $\Delta = \Theta(1)$
- Such codes exist; need not be constructive!

Given inputs x,y to EQ

- Construct x' = $E(x) \circ O^{N/2} 1^{N/2}$
- Construct y' = $E(y) \circ 1^{N/2} O^{N/2}$

$$|x'| = |y'| = N$$

• $d_H(x',y')$ is either N or $(1+\Delta)N$

• \rightarrow GHD_{Δ}(x',y') satisfies the right properties

Summary

Deterministic LBs are easier to handle*

- LB problem gets considerably harder for randomized data stream algorithms
 - Randomization is powerful
 - Exercise: show O(1)-bit protocol for equality (Hint: Use error-correcting codes)
- Will see how to handle randomized protocols in the next lecture

Summary

C.C. is a well-developed field with many tools and ideas, so offers hope for streaming LBs

But the problems that arise from streaming are difficult
 promise problems
 randomized computation

Sketching

- Function-specific data compression
- Lossy data compression
 - function is usually only approximable
- Data is distributed over several chunks
 - Chunks are compressed into small sketches
 - Function is computed over the sketches

Indexing (IND)

□ Input: a binary string **x** of length **n**

Can we sketch it so that any bit can be retrieved w.h.p.?

Theorem.

The sketching complexity of IND is $\Omega(n)$.

Information Theory Primer

Entropy of a random variable X

$$H(X) = -\sum_{x} \Pr[X = x] \log \Pr[X = x]$$

amount of "uncertainty" in X (in bits)

• X is constant \rightarrow H(X) = 0

■ X is uniform → H(X) = log(|range(X)|)
□ largest value possible

Binary Entropy: $H_2(\cdot)$

Conditional Entropy

Conditional entropy of X given Y

H(X | Y) = H(X, Y) - H(Y)

amount of uncertainty left in X after knowing Y

 $\blacksquare H(X \mid X) = 0$

If X,Y are independent, H(X | Y) = H(X)

Mutual Information

Mutual information between X and Y:

I(X : Y) = H(X) - H(X | Y)= H(Y) - H(Y | X)

Conditional mutual information: $I(X : Y \mid Z) = H(X \mid Z) - H(X \mid Y, Z)$

Basic Relationships

H(X,Y)

Sub-additivity

Entropy is sub-additive $H(X,Y) \le H(X) + H(Y).$

Equality iff X, Y independent
→ H(X | Y) ≤ H(X)
→ H(X | Y,Z) ≤ H(X | Z)

Fano's Inequality

□ X: a binary random variable

- Y: a predictor of X
 g(Y) is a "guess" of X, for some function g
- **E**: indicator r.v. for error event " $g(Y) \neq X$ "
- Then, $H(X | Y) \leq H(E)$ If $Pr[E] \leq \delta \leq \frac{1}{2}$, then $H(E) \leq H_2(\delta)$

Indexing

□ Input: a binary string **x** of length **n**

Output: a sketch of x so that any bit of x can be retrieved w.h.p.

Theorem.

The sketching complexity of indexing is $\Omega(n)$.

Proof

Let s(x,R) be the sketch of x
R is a public coin

Let X be uniformly chosen in {0,1}ⁿ
Let S = s(X,R)

■ We will show that H(S) is large → sketch size must be large

H(X | R) = H(X) = n

H(S) \geq H(S | R) \geq H(S | R) – H(S | X,R) = I(X : S | R)= H(X | R) - H(X | S,R)

Proof (cont.)

Proof (cont.)

H(X | S,R) $= H(X_1, X_2, ..., X_n | S, R)$ $\leq \sum_{i} H(X_{i} | S,R)$ [by sub-additivity] $\leq \mathbf{n} \cdot H_2(\delta)$ [by Fano's inequality]

Concluding, $H(S) \ge n - n \cdot H_2(\delta) \ge n \cdot (1 - H_2(\delta))$

Summary

- Information-theoretic arguments provide a general LB template
- □ Can be used to prove lower bounds for other functions, e.g., set disjointness
- In some cases, refined tools are needed to understand the structure
 - E.g., Statistics, Fourier analysis
- Open problem: prove good lower bounds on the sketching of edit distance