
Lower Bounds

T.S. Jayram (IBM Almaden)

MADALGO Summer School
Lecture I

�Traditionally, “efficient” computation
is identified with polynomial time
� P vs NP
� Clearly, not adequate for massive data

sets

� Is there a simple characterization of
efficient computation over massive
datasets?

Algorithms for Massive Data Sets

A Single Theory?

�Modern computing systems are
complex and varied
�Memory + I/O architectures
� Distributed computing e.g. Map-Reduce
� Randomization
� Etc.

�Difficult to capture all these aspects in
a single model

Many Paradigms

�Sampling
�Sketching
�Data Streams
�Read-write streams
�Stream-sort
�Map-reduce
�External memory algorithms

… and many more yet to come!

Lower Bounds

�This is a fertile ground for proving
unconditional results

�Many successes ☺
�Certain problems seem to be

fundamental
�Reductions play a big role

Sampling

Input Data

Algorithm

� Query input at
random locations

� Can query adaptively

� Key Measure:
#queries

Warm-up: distinct elements (F0)

� “Needle-in-a-haystack”
�Create 2 inputs

�2-approximation needs space Ω(n)

0 0 0 . . . 0

0 0 1 . . . 0

F0 = 1

F0 = 2

Theorem [Bar-Yossef, Kumar, Sivakumar]

For symmetric functions, uniform sampling is the
best possible.

Sampling LBs for Symmetric Functions

Proof

Algorithm

X1 . . . Xn-1X2 Xn

X3 . . . XnXn-1 X17

PERMUTE

Lower Bounds for Uniform Sampling

Tools:
� block sensitivity

� Hellinger distance

� Kullback-Leibler divergence

� Jensen-Shannon divergence

Combinatorics
[Nisan]

Statistics
[Bar-Yossef et al.]

Information theory
[Bar-Yossef]

Example

�Find the mean of n numbers in [0,1]

�Exercise: Show that Ο(1/ε2) samples
suffice to approximate mean additively
within ε

�Lower Bound proof using Hellinger
distance

Step 1: Approximation Î Promise

�Let
� a : ½ + ε 0’s and ½ - ε 1’s

� b : ½ - ε 0’s and ½ + ε 1’s
� Promise: Input x ∈ {a,b}

�Any sampling algorithm for Mean can
distinguish whether x=a or x=b
� as long as additive error is ε/4

Step 2: Create distributions

�Pa: distribution induced by taking a
uniform sample from input a

�Pb: sampling uniformly from input b

�Compute Hellinger distance h2(Pa,Pb)
� For discrete distributions P, Q

h2(P,Q) = (½) k√P - √Qk2

= (½) Σx (√P(x) - √Q(x))2

� h(Pa,Pb) = O(ε) (Exercise)

Lower bound via Hellinger Distance

Theorem.

Any uniform sampling algorithm needs

k=Ω(1/ε2)

samples to distinguish input a from input b

Proof

� Initially: h(Pa,Pb) = O(ε)

�Finally: h((Pa)k,(Pb)k) = Ω(1)
[By distinguishability]

�Key Idea: multiplicative property of
Hellinger distance

1 – h2(Pk,Qk) = (1 – h2(P,Q))k
(Exercise)

�So O(1) = (1- O(ε2))k Æ k = Ω(1/ε2)

Summary

� Identify 2 hard inputs such that
� The outputs are different
� Sampling from the inputs creates close

distributions

�Apply Theorem to get LB on samples

�Extensions [Bar-Yossef] : more than 2
inputs, multi-output answers etc.

Data Streams

Algorithm

Data Set

�Stream through the data in a one-way
fashion
� limited main memory storage
� Also allow multiple passes

Lower Bounds for Data Streams

� Idea is to somehow bound the flow of
information (yields space lower
bounds)

�Model is too fine-grained to prove
lower bounds directly

� Instead, we consider more powerful
models (hopefully simpler to tackle)

Communication complexity (C.C.)

x y

Resources:
bits = ∑i |ai| + ∑j |bj| + |f(x,y)|
rounds

See book by Kushilevitz & Nisan
Extensions to multiple parties

Alice Bob

a1

b1

a2

M
ak

f(x,y)

Transcripts

� Issue: Answer is too long!
�Solution: let last player output some

more bits instead of the answer
� Contributes to bit cost
� Does not increase #rounds

�Transcript: string describing the entire
communication + last player’s output
� Output is a function of the transcript

alone

Data Streams Î C.C.

Theorem.

Data stream algorithm for f(x ◦ y)
Space s
Passes k

C.C. protocol for f(x,y)
Bits O(2ks)

Rounds 2k-1

Algorithm

x y

Memory

Proof

� Alice gets x and Bob gets y
� Given data stream algorithm P, Alice and

Bob simulate P on x ◦ y

a1

b1

a1b1a2

a2

f(x,y)

b2

One-pass Data Stream

�Data stream algorithm for f(x◦y)
�Space s

Î O(s), 1-round protocol for f(x,y)

�One-round communication protocols
are worthy of study!

Caveat

�C.C. usually deals with decision
problems

�Data stream problems involve
approximate computations

�Usual reduction techniques yield
promise problems in C.C.

The Equality Function

�EQ: U × U Æ {0,1}
�EQ(x,y) = 1 iff x = y

Theorem.

Deterministic C.C. of EQ equals log |U|

Proof Warmup: One-way

�Suppose Alice sends fewer than
log|U| bits

�#messages of Alice < 2log|U| = |U|
�By pigeonhole principle, there exist

distinct x, x’ ∈ U s.t. Alice sends the
same message for both x and x’

�Suppose Bob’s input is x.
�Then protocol gives same answer on

both (x,x) and (x’,x).
�Contradiction.

Proof for General Protocols

Fundamental Theorem of C.C.

Let P(x,y) denote the transcript of a det.
communication protocol P. Then,

P(x,y) = t = P(u,v)
Î P(x,v) = t = P(y,v)

x

u

vy

Rectangle Property of C.C.

� View P(x,y) as a
matrix of transcripts
� Rows/Columns indexed by

inputs to Alice/Bob resp.

� Every transcript is a
combinatorial
rectangle in P
� of the form A × B
� A: subset of rows
� B: subset of columns

Fooling Set Method for EQ

�Consider the set of inputs
F = { (x,x) : x ∈ {0,1}n } (YES instances)

�No two inputs in F can generate the
same transcript in a protocol P. Why?

�Suppose P(x,x) = t = P(x’,x’), x ≠ x’
�By fundamental theorem, P(x,x’) = t
�Protocol errs on (x,x’). Contradiction!

�# of transcripts ≥ 2n

Gap Hamming Distance (GHD)

� x,y ∈ {0,1}n

� |x| = |y| = n/2

Promise problem (with parameter ∆>0):
� GHD∆(x,y)

= 1 if dH(x,y) ≥ (1 + ∆)n/2
= 0 if dH(x,y) ≤ n/2

Exercise: Show the connection between GHD∆

and distinct elements (F0)

Reduction from EQ to GHD

� Idea: use a binary error-correcting code
� Encoder E maps n bits to N = Θ(n) bits
� Each codeword has weight N/2
� Relative distance ∆ = Θ(1)
� Such codes exist; need not be constructive!

� Given inputs x,y to EQ
� Construct x’ = E(x) ◦ 0N/2 1N/2

� Construct y’ = E(y) ◦ 1N/2 0N/2

� |x’| = |y’| = N
� dH(x’,y’) is either N or (1+∆)N

� Æ GHD∆(x’,y’) satisfies the right properties

Summary

� Deterministic LBs are easier to handle*

� LB problem gets considerably harder for
randomized data stream algorithms
� Randomization is powerful
� Exercise: show O(1)-bit protocol for equality

(Hint: Use error-correcting codes)

� Will see how to handle randomized
protocols in the next lecture

Summary

�C.C. is a well-developed field with
many tools and ideas, so offers hope
for streaming LBs

�But the problems that arise from
streaming are difficult
� promise problems
� randomized computation

Algorithm

Sketching

� Function-specific data compression
� Lossy data compression

� function is usually only approximable
� Data is distributed over several chunks

� Chunks are compressed into small sketches
� Function is computed over the sketches

Data
Chunk

Indexing (IND)

� Input: a binary string x of length n

�Can we sketch it so that any bit can
be retrieved w.h.p.?

Theorem.

The sketching complexity of IND is Ω(n).

Information Theory Primer

Entropy of a random variable X

� amount of “uncertainty” in X (in bits)

� X is constant Æ H(X) = 0

� X is uniform Æ H(X) = log(|range(X)|)
� largest value possible

H(X) = −
X
x

Pr[X = x] log Pr[X = x]

Binary Entropy: H2(·)

Conditional Entropy

Conditional entropy of X given Y

� amount of uncertainty left in X after
knowing Y

� H(X | X) = 0

� If X,Y are independent, H(X | Y) = H(X)

H(X | Y) = H(X,Y)− H(Y)

Mutual Information

Mutual information between X and Y:

Conditional mutual information:

I(X : Y) = H(X)− H(X | Y)

= H(Y)−H(Y | X)

I(X : Y | Z) = H(X | Z)−H(X | Y,Z)

Basic Relationships

H(X | Y)
I(X : Y)

H(Y | X)

H(X,Y)

H(X) H(Y)

Sub-additivity

Entropy is sub-additive
H(X,Y) ≤ H(X) + H(Y).

� Equality iff X, Y independent
�Î H(X | Y) ≤ H(X)
�Î H(X | Y,Z) ≤ H(X | Z)

Fano’s Inequality

�X: a binary random variable

�Y: a predictor of X
� g(Y) is a “guess” of X, for some function g

�E: indicator r.v. for error event
“g(Y) ≠ X”

Then, H(X | Y) ≤ H(E)
� If Pr[E] ≤ δ ≤ ½, then H(E) ≤ H2(δ)

Indexing

� Input: a binary string x of length n

�Output: a sketch of x so that any bit
of x can be retrieved w.h.p.

Theorem.

The sketching complexity of indexing is Ω(n).

Proof

�Let s(x,R) be the sketch of x
� R is a public coin

�Let X be uniformly chosen in {0,1}n

�Let S = s(X,R)

�We will show that H(S) is large
Æ sketch size must be large

Proof (cont.)

H(S)
≥ H(S | R)
≥ H(S | R) – H(S | X,R)
= I(X : S | R)
= H(X | R) – H(X | S,R)

H(X | R) = H(X) = n

Proof (cont.)

H(X | S,R)
= H(X1,X2,...,Xn | S,R)
≤ ∑i H(Xi | S,R)

[by sub-additivity]
≤ n · H2(δ)

[by Fano’s inequality]

Concluding,
H(S) ≥ n – n · H2(δ) ≥ n · (1- H2(δ))

Summary

� Information-theoretic arguments
provide a general LB template

�Can be used to prove lower bounds for
other functions, e.g., set disjointness

� In some cases, refined tools are
needed to understand the structure
� E.g., Statistics, Fourier analysis

�Open problem: prove good lower
bounds on the sketching of edit
distance

	Lower Bounds
	Algorithms for Massive Data Sets
	A Single Theory?
	Many Paradigms
	Lower Bounds
	Sampling
	Warm-up: distinct elements (F0)
	Sampling LBs for Symmetric Functions
	Proof
	Lower Bounds for Uniform Sampling
	Example
	Step 1: Approximation Promise
	Step 2: Create distributions
	Lower bound via Hellinger Distance
	Proof
	Summary
	Data Streams
	Lower Bounds for Data Streams
	Communication complexity (C.C.)
	Transcripts
	Data Streams C.C.
	Proof
	One-pass Data Stream
	Caveat
	The Equality Function
	Proof Warmup: One-way
	Proof for General Protocols
	Rectangle Property of C.C.
	Fooling Set Method for EQ
	Gap Hamming Distance (GHD)
	Reduction from EQ to GHD
	Summary
	Summary
	Sketching
	Indexing (IND)
	Information Theory Primer
	Binary Entropy: H2(¢)
	Conditional Entropy
	Mutual Information
	Basic Relationships
	Sub-additivity
	Fano’s Inequality
	Indexing
	Proof
	Proof (cont.)
	Proof (cont.)
	Summary

